Water quality modeling of fertilizer management impacts on nitrate losses in tile drains at the field scale.

نویسندگان

  • V Nangia
  • P H Gowda
  • D J Mulla
  • G R Sands
چکیده

Nitrate losses from subsurface tile drained row cropland in the Upper Midwest U.S. contribute to hypoxia in the Gulf of Mexico. Strategies are needed to reduce nitrate losses to the Mississippi River. This paper evaluates the effect of fertilizer rate and timing on nitrate losses in two (East and West) commercial row crop fields located in south-central Minnesota. The Agricultural Drainage and Pesticide Transport (ADAPT) model was calibrated and validated for monthly subsurface tile drain flow and nitrate losses for a period of 1999-2003. Good agreement was found between observed and predicted tile drain flow and nitrate losses during the calibration period, with Nash-Sutcliffe modeling efficiencies of 0.75 and 0.56, respectively. Better agreements were observed for the validation period. The calibrated model was then used to evaluate the effects of rate and timing of fertilizer application on nitrate losses with a 50-yr climatic record (1954-2003). Significant reductions in nitrate losses were predicted by reducing fertilizer application rates and changing timing. A 13% reduction in nitrate losses was predicted when fall fertilizer application rate was reduced from 180 to 123 kg/ha. A further 9% reduction in nitrate losses can be achieved when switching from fall to spring application. Larger reductions in nitrate losses would require changes in fertilizer rate and timing, as well as other practices such as changing tile drain spacings and/or depths, fall cover cropping, or conversion of crop land to pasture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated Water and Nitrogen Fertilizer Management Using Modeling of System Dynamics Approach in Sugarcane Farmlands with Subsurface Drainage Systems

Using water and fertilizer management at the farm level can be increased water use efficiency and reduce the volume of drainage water, fertilizer losses, and other pollutants in farmland with deep underground drains such as Khuzestan agro-industrial Companies. In the present study, a comprehensive simulation model for the water cycle and the nitrogen dynamics modeling was used for water and fer...

متن کامل

Navigating the socio-bio-geo-chemistry and engineering of nitrogen management in two illinois tile-drained watersheds.

Reducing nitrate loads from corn and soybean, tile-drained, agricultural production systems in the Upper Mississippi River basin is a major challenge that has not been met. We evaluated a range of possible management practices from biophysical and social science perspectives that could reduce nitrate losses from tile-drained fields in the Upper Salt Fork and Embarras River watersheds of east-ce...

متن کامل

MODEL BASED NITRATE TMDLs FOR TWO AGRICULTURAL WATERSHEDS OF SOUTHEASTERN MINNESOTA'

In this study, a set of nitrogen reduction strategies were modeled to evaluate the feasibility of improving water quality to meet total maximum daily loads (TMDLs) in two agricultural watersheds. For this purpose, a spatial-process model was calibrated and used to predict monthly nitrate losses (1994-96) from Sand and Bevens Creek watersheds located in south-central Minnesota. Statistical compa...

متن کامل

ارزیابی یک‌نواختی توزیع و تلفات نیترات در کودآبیاری جویچه‌ای

The application of N fertilizers with surface irrigation stream (surface N fertigation( is a key approach for fertilizer management. The main objective of this study was to investigate furrow fertigation management effects on distribution uniformity and runoff losses of nitrate in field scale. A field corn experiment was carried out with a complete randomized block design having 12 experiments....

متن کامل

مدل‌سازی مدیریت کوددهی نیتروژن در مزارع نیشکر تحت پوشش سیستم‌های زهکشی با استفاده از رویکرد پویایی سیستم

In this research, a comprehensive simulation model for water cycle and the nitrogen dynamics modeling including all the important processes involved in nitrogen transformations such as fertilizer dissolution, nitrification, denitrification, ammonium volatilization, mineralization, immobilization as well as all the important nitrogen transportation processes including nitrogen uptake by the plan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 37 2  شماره 

صفحات  -

تاریخ انتشار 2008